PMT PMT

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Statistics 1 (WST01/01)

PMT PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA040141
All the material in this publication is copyright
© Pearson Education Ltd 2014

PMT PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

PMT

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

PMT

Question	Scheme	Marks
1. (a)	$S_{yy} = 39418 - \frac{560^2}{8}$	M1
	$= \underline{218}$	Alcao (2)
(b)	$[r =] \frac{-710}{\sqrt{"218" \times 2587.5}}$	M1
	= -0.945344 <u>awrt</u> -0.945	A1 (2)
(c)	As <u>age increases</u> , <u>volume/blood</u> (pumped) <u>decreases</u> (o.e.)	B1 (1)
(d)	Yes as r is close to -1 (if $r < -0.5$) or Yes as r is close to 1 (if $r > 0.5$) For ft, if $-0.5 \le r \le 0.5$ " No since r is close to 0"	B1ft (1)
(e)	$b = \frac{-710}{2587.5} = -0.27439 \qquad \text{(allow } \frac{-284}{1035}\text{)} \qquad \text{awrt} - 0.27$	M1 A1
	$a = \frac{560}{8}$ -'their b'× $\frac{370}{8}$ [= 82.690] so $y = 82.7 - 0.274x$	M1, A1
(f)(i) (ii)	$(y = 82.7 - 0.274 \times 40 =) 71.74$ = awrt 72 Should be reliable since interpolation (o.e.)	(4) B1 B1
		(2) [12]
	Notes	[12]
(a)	M1 for a correct expression for S_{yy} A1 for 218 (condone 218.0)	
(b)	M1 for attempt at correct formula with their $S_{yy}(>0)$ and given S_{xx} , S_{xy} in the corr	ect places
	Condone missing " $-$ " for M1 -0.95 with no expression seen scores M1A0, awrt -0.945 with no working sc	cores M1A1
(c)	B1 Must mention "age" and "volume" or "blood (pumped)" No ft.	
(d)	B1ft must comment on supporting and state: $\frac{\text{high/strong/clear}}{\text{high/strong/clear}}$ (negative or positive) 'points lie close to a line' is B0 since there is no evidence of this. Do not follow through $ r > 1$.	correlation
(e)	1^{st} M1 for a correct expression for b . Condone missing "-" 1^{st} A1 for awrt -0.27 or allow exact fraction. 2^{nd} M1 for a correct method for a . Follow through their value of b for a correct equation for y and x with $a = \text{awrt } 82.7$ and $b = \text{awrt } -0.274$	No fractions
(f)	 1st B1 for awrt 72 2nd B1 for a comment that suggests it is reliable since 40 is within the range of the a of the data or interpolation NB "it is reliable since it is in the range" is B0 since "it" is not explicit enough Condone extra non-relevant comments but penalise contradictory comments. e.g. "reliable since 40 is within the range (of ages) and 72 within range of volumes" is B1 sin 	

Question	Scheme	Marks
2. (a)	Width = $\frac{5}{3} \times 1.5 = 2.5$ (cm)	B1
	Area = $6 \times 1.5 = 9 \text{ cm}^2$ has frequency = 12 so 1.5 cm ² = 2 people (o.e.) Frequency of 10 corresponds to area of 7.5 so height = $\frac{3 \text{ (cm)}}{}$	M1 A1 (3)
(b)	$Q_2 = [2.5 +] \frac{(25/25.5 - 16)}{12} \times 3 = 4.75$ (or 4.875 if use $n + 1$) awrt $\underline{\textbf{4.75}}$	M1 A1 (2)
(c)(i)	$[\overline{x} =] \frac{394}{50} = 7.88$ (*) $[\sigma_x =] \sqrt{\frac{6500}{50} - \overline{x}^2} = \sqrt{67.9056}$	Blcso
(ii)	$\left[\sigma_{x} = \right] \sqrt{\frac{6500}{50} - \overline{x}^{2}} = \sqrt{67.9056}$	M1A1
	= awrt 8.24 (Accept $s =$ awrt 8.32)	A1 (4)
(d)	$\overline{x} > Q_2$ So <u>positive</u> (skew)	B1ft dB1 (2)
(e) (i) (ii) (iii)	There is <u>no effect</u> on the mean The median will <u>increase</u> The standard deviation will <u>decrease</u>	B1 B1 B1 (3)
	Notes	[14]
(a)	for forming a relationship between area and no. of people or "their width" × "their hei or for $\frac{3h}{10} = \frac{9}{12}$ oe A1 for height of 3 (cm) NOTE: the common incorrect answer width = 3 and height = 2.5 scores B0M1A0	ght"= 7.5
(b)	M1 for a correct fraction $\left[\frac{9}{12} \text{ or } \frac{9.5}{12}\right] \times 3$. Ignore end point but must be +. May be seen in an equivalent expression e.g. $\frac{(x-2.5)}{5.5-2.5} = \frac{25-16}{28-16}$ Allow use of $(n+1)$ giving 4.875 NB May work down so look out for $\left[5.5\right] - \frac{28-25}{12} \times 3$, etc.	
(c)(i)	B1 for $\frac{394}{50}$ or for fully correct expression seen $\frac{16 \times 1.25 + 12 \times 4 + 10 \times 8 + 8 \times 15.5 + 4 \times 30.5}{50}$	
(ii)	M1 for a correct expression must have 6500, 50 and 7.88. (square root not necess 1^{st} A1 for a correct expression which must have square root 2^{nd} A1 for awrt 8.24 (use of $s = awrt 8.32$). Condone incorrect labelling if awrt 8.24 is four	
(d)	1 st B1ft for a correct comparison of \overline{x} =7.88 and their Q_2 (this may be seen embedded another formula i.e. 3(mean-median)/s.d.) $Q_3 - Q_2 > Q_2 - Q_1 \text{ is B0 unless } Q_1 \text{ and } Q_3 \text{ have been found.} (Q_1 = 1.95/1.99, Q_3 = 0.95/1.99)$	
	2^{nd} dB1 Dependent on the 1^{st} B1 and for concluding "positive" skew. Note: if their $Q_2 > 7.88$, then B0. Positive correlation is B0.	

	Quest	tion	Scheme				Mark	KS			
	3.	(a)	P(X = 1)	F(1) = 0.2						B1	
			e.g. P(2	X = 3) = F(3) -	-F(1) = 0.3					M1	
				х	1	3	5	7		A1 A1	
				P(X = x)	0.2	0.3	<u>0.4</u>	<u>0.1</u>		ALAI	
											(4)
		(b)	$P(2 \le X)$	$r \leq 6$) = $P(X = 1)$	(3) + P(X = 5))				M1	
						= <u>0.7</u>				A1	
											(2)
		(c)	F(4) = 1	$P(X \le 4) = P(X$	$r \leq 3$) = $F(3)$	= <u>0.5</u>				B1	
											(1)
ļ										[7]	
ļ						Notes					
		(a)	B1	for $P(X = 1) =$	()						
			M1	for a correct is correct proba		g $F(x)$ to find	one other pro	bability (may	be implied	by one of	ther
			1 st A1	for any two c	• /	bilities from	P(X=3) = 0.3	P(X=5)=0	0.4, $P(X = 7)$) = 0.1	
			$2^{nd} A1$	for a fully con	-		,	, ()	, (,	
				For both A m	narks, condo	ne missing/in	correct labels	, but the prob	abilities mu	st be	
				associated wi	ith the corre	ct <i>x</i> -values					
		(b)	M1	for $P(X = 3) +$	P(X=5) (n	nay ft their va	lues) or $F(5)$	-F(1)			
			A 1	for 0.7 oe							
		(c)	B1	for 0.5 oe							

Ques	tion	Scheme	Marks
4.		$P(Y > 17) = 1 - P(Y < 17) = \underline{0.4}$	B1 (1)
	(b)	$P(Y < \mu) = 0.5 \text{ or } [P(\mu < Y < 17) =] 0.6 - 0.5$ = <u>0.1</u>	M1 A1 (2)
	(c)	$[P(Y < \mu \mid Y < 17) =]$	(2)
		$\frac{P(Y < \mu)}{P(Y < 17)}$ or $\frac{0.5}{0.6}$	M1
		$=\frac{5}{6}$ awrt <u>0.833</u>	A1
			(2)
			[5]
		Notes	
	(a)	B1 for 0.4 Note: do not isw if 0.6554 is given as answer after 0.4 has been seen.	
	(b)	M1 for indicating $P(Y < \mu) = 0.5$ (may be seen on a diagram)	
	(c)	M1 for a correct statement $\frac{P(Y < \mu)}{P(Y < 17)}$ or a correct ratio of probabilities May be implied by $\frac{P(Y < \mu)}{0.6}$ or $\frac{0.5}{P(Y < 17)}$	

Scheme

Marks

Question

Question	Scheme	Maiks
5. (a)	-2a + (0) + 2a + 4c = 0.8 or $4c = 0.8$	M1
	$\underline{c} = 0.2$	A1 (2)
(b)	4 . (0) . 4 . 16 . 5 9 16 . 5	(2) M1
(D)	4a + (0) + 4a + 16c = 5 or $8a + 16c = 5$	
	$8a + 3.2 = 5$ so $\underline{a} = 0.225$ or $\frac{9}{40}$	A1
	$2a+b+c=1$ so $b=1-"0.2"-2\times"0.225"$	M1
		A1ft
	$\frac{v = 0.55}{20}$ or $\frac{20}{20}$	
(c)	$V_{co}(V) = 5 + 0.0^2$	(4) M1A1
(c)	$Var(X) = 5 - 0.8^2$, $= 4.36$	(2)
(d)	$[5 - 3E(X) = 5 - 3 \times 0.8]$ = <u>2.6</u>	B1 (1)
(e)	$3^2 \text{Var}(X) = 9 \times 4.36$, or $[E(Y^2) - (E(Y))^2] = 46 - 2.6^2 = 39.24$ awrt 39.2	(1) M1, A1
	$5 \text{ viii}(X) = 5.24 \text{ awit } \frac{37.24}{1.00} \text{ awit } \frac{37.24}{1.00}$	(2)
(f)	$Y \ge 0 \Rightarrow 5 - 3X \ge 0 \Rightarrow 5 \ge 3X$	M1
	$X \leq 1\frac{2}{3}$	A1
	$[P(Y \ge 0) = P(X \le 0) =] P(X = -2) + P(X = 0) \underline{\text{or}} a + b$	M1
	$=$ <u>0.575</u> or $\frac{23}{40}$	A1ft
	<u></u>	(4)
		[15]
	Notes	
(a)	M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products corresponding to the second secon	ect
(b)	1 st M1 for forming an equation using $E(X^2) = 5$ with at least 2 non-zero terms correct	et, ft their c
	1 st A1 for 0.225 or any equivalent fraction	
	2 nd M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their	$\operatorname{ir}(2a+b+c)=1)$
	2^{nd} A1ft for 0.35 or a value of b such that their $2a+b+c=1$ (where a, b and c are all 1	probabilities)
(c)	M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0)	
(e)	M1 for $9 \times \text{Var}(X)$ ft their $\text{Var}(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores 4/4	
(f)	1 st M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p of	or <i>q</i> correct
	$1^{\text{st}} A1$ for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le \text{awrt } 1.7$	1
	2^{nd} M1 for $P(X = 0) + P(X = -2)$ Allow letters " $a + b$ " here or ft their values.	
	2^{nd} A1ft for their $(a + b)$ or 0.575 (where a , b and $a+b$ are all probabilities)	
Alt-	1^{st} M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen	n earlier)
Method	1 st A1 for 11, 5, -1 and -7 all correct	
	2^{nd} M1 for $P(Y=11) + P(Y=5)$	
	2^{nd} A1ft for their $(a+b)$ or 0.575 (where a , b and $a+b$ are all probabilities)	

Question	Scheme	Marks
6. (a)	$P(S) = 0.31 + p$, $P(D) = 0.35$, $P(S \cap D) = 0.14$	M1
	(0.31 + p)(0.35) = 0.14 oe	M1
	P(S) = 0.4 or 0.31 + p = 0.4 or 0.35p = 0.0315	A1
	$p = \underline{0.09}$	A1 (4)
(b)	$P(S \cup M \cup D) = 1$ so $q = 1 - (0.17 + 0.10 + 0.15 + 0.06 + 0.04) - p$ or $0.48 - p$	(4) M1
	q = 0.39	Alft
	9 000	(2)
(c)(i)	$[P(D \mid S \cap M)] = \frac{P(D \cap S \cap M)}{P(S \cap M)} = \frac{0.10}{0.27}$	M1
	$P(S \cap M) = 0.27$	IVII
	$=\frac{10}{10}$ or awrt 0.370	A1
	$= \frac{10}{27} \text{ or awrt } \underline{0.370}$	Al
(ii)	$[P(D \mid S' \cap M]] = \frac{P(D \cap S' \cap M)}{P(S' \cap M)} = \frac{0.15}{0.54}$	M1
		IVII
	$=\frac{5}{18}$ or awrt 0.278	A1
	18 of twit <u>0.270</u>	Al
		(4)
(d)	27 order $S \cap M$ so expect $27 \times \frac{10}{27}D$ or 36 order $S' \cap M$ so expect $36 \times \frac{5}{18}$ D	M1
	So expect 20 (desserts)	A1cao
		(2)
	Notes	[12]
(a)	1 st M1 for attempting P(S), P(D) and $P(S \cap D)$ with at least 2 correct.	
	These may be seen in a conditional probability.	
	NB $P(S \mid D) = \frac{0.14}{0.35}$ and $P(D \mid S) = \frac{0.14}{0.31 + p}$	
	2 nd M1 using the independence condit' and their values to form a suitable equation f	For p or $P(S)$
	1^{st} A1 for $P(S) = 0.4 \text{ or } 0.31 + p = 0.4 \text{ or } 0.35p = 0.0315$ (i.e. one move from $p = 0.0315$))
(1)	M1	
(b)	M1 for using sum of probabilities = 1 and ft their p A1ft for 0.48 – "their p " (provided 0 < their p < 0.48)	
	Pitt for 0.40 then p (provided $0 < then p < 0.40)$	
(c)	1 st M1 for a correct ratio of probabilities or a correct ratio expression with at least or	ne correct
	probability substituted. (M0 if numerator is $P(D) \times P(S \cap M)$ or numerator>c	denominator)
	$1^{\text{st}} \text{ A}1 \text{for } \frac{10}{27} \text{ or awrt } 0.370$	
	2 nd M1 for a correct ratio of probabilities or a correct ratio expression with at least or	ne correct
	probability substituted. (M0 if numerator is $P(D) \times P(S' \cap M)$ or numerator>	uenominator)
	$2^{\text{nd}} \text{ A1 for } \frac{5}{18} \text{ or awrt } 0.278$	
	10	
(d)	M1 for at least one correct calculation ft their probabilities from (c).	
	i.e. either 27×their (c)(i) or 36×their (c)(ii)	

Ques	stion	Scheme	Marks
7.	(a)	$[P(D > 50) =] P(Z > \frac{50 - 32}{12})$	M1
		=1-P(Z<1.5) or $1-0.9332$	M1
		= awrt <u>0.0668</u> or 6.68%	Alcso
	(b)	P(D > d) = 0.191 + 0.0668 = 0.2578 or $P(D < d) = 0.7422$	B1 (3)
		$\frac{d-32}{12}$ = 0.65 (calc gives 0.65014 or 0.65012)	M1A1
		d = 39.8	A1 (4)
	(c)	$0.0668 \times 0.191^{2} $ [= 0.0024369]	M1
		[]×3	M1
		= 0.00731079 = awrt 0.0073	A1
			(3)
		Notes	[10]
	(a)	1 st M1 for standardising with 50, 32 and 12. Allow ±	
	(a)	2^{nd} M1 for $1 - P(Z < 1.5)$ seen i.e. a correct method for finding $P(Z > 1.5)$ e.g. $1 - t$	ables value
		A1cso for awrt 0.0668 with both Ms scored and no incorrect working seen.	
		Condone incomplete notation and condone use of different letters for <i>Z</i> .	
	(b)	B1 for awrt 0.2578 (calc = 0.257807) or awrt 0.7422 (calc = 0.742192) may be implied by $z = \text{awrt } 0.65$	
		M1 for standardising with 32 and 12, i.e. $\pm \frac{d-32}{12}$ (equating to a probability is M	0)
		$1^{\text{st}} \text{A}1$ for $z = \text{awrt } 0.65$ and a correct equation in d (with compatible signs) $2^{\text{nd}} \text{A}1$ for awrt 39.8	
	(c)	1 st M1 for 0.0668×0.191^2 or sight of awrt 0.0024 (may be seen embedded in part an expression, e.g. ' $n \times 0.0668 \times 0.191^2$ ') (condone $6.68\% \times 19.1\% \times 19.1\%$ if the final answer given is < 1)	of
		2^{nd} M1 for any expression of the form $3pq^2$ where p and q are both probabilities	
		A1 for awrt 0.0073 allow awrt 0.73% but 0.73 is A0	
		111 101 at 0.0075 and at 0t 0t 0t 0t 110	

PMT